Protein-directed synthesis of NIR-emitting, tunable HgS quantum dots and their applications in metal-ion sensing.

نویسندگان

  • Nirmal Goswami
  • Anupam Giri
  • Shantimoy Kar
  • Megalamane Siddaramappa Bootharaju
  • Robin John
  • Paulrajpillai Lourdu Xavier
  • Thalappil Pradeep
  • Samir Kumar Pal
چکیده

The development of luminescent mercury sulfide quantum dots (HgS QDs) through the bio-mineralization process has remained unexplored. Herein, a simple, two-step route for the synthesis of HgS quantum dots in bovine serum albumin (BSA) is reported. The QDs are characterized by UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, luminescence, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), circular dichroism (CD), energy dispersive X-ray analysis (EDX), and picosecond-resolved optical spectroscopy. Formation of various sizes of QDs is observed by modifying the conditions suitably. The QDs also show tunable luminescence over the 680-800 nm spectral regions, with a quantum yield of 4-5%. The as-prepared QDs can serve as selective sensor materials for Hg(II) and Cu(II), based on selective luminescence quenching. The quenching mechanism is found to be based on Dexter energy transfer and photoinduced electron transfer for Hg(II) and Cu(II), respectively. The simple synthesis route of protein-capped HgS QDs would provide additional impetus to explore applications for these materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Quantum Dots in Cell Tracking

Tracking cells after transplantation is always one the main concerns of researchers in the field of regenerative medicine. Finding a tracer with long stability and low cytotoxicity can be considered as a solution for this issue. Semiconductor nanocrystals, also called quantum dots (QDs), have unique photophysical properties which make them as suitable candidate in this setting. Broad-range exci...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

Ion exchange growth of Zinc Sulfide quantum dots in aqueous solution

We report the growth by ion exchange synthesis of ZnS nanoparticles in MCM-41 matrices using Zn (CH3COO)2 and Na2S starting sources. The final product (ZnS/MCM-41) was characterized by X-ray diffraction (XRD) pattern, transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectrometry (IR) and UV-vis spectroscopy. Its crystalline st...

متن کامل

Ion exchange growth of Zinc Sulfide quantum dots in aqueous solution

We report the growth by ion exchange synthesis of ZnS nanoparticles in MCM-41 matrices using Zn (CH3COO)2 and Na2S starting sources. The final product (ZnS/MCM-41) was characterized by X-ray diffraction (XRD) pattern, transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectrometry (IR) and UV-vis spectroscopy. Its crystalline st...

متن کامل

Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots.

The near-infrared (NIR)-emitting CdSeTe alloyed quantum dots (AQdots) that capped with L-cysteine were applied for ultrasensitive Cu(2+) sensing. The sensing approach was based on the fluorescence of the AQdots selectively quenched in the presence of Cu(2+). Experimental results showed a low interference response towards other metal ions. The possible quenching mechanism was discussed on the ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 8 20  شماره 

صفحات  -

تاریخ انتشار 2012